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fiber chromatic dispersion. However, the phase noise from the beating of
signal with noisc also spreads to adjacent pulse, causing IXPM-induced
nonlincar phase noise. The combined nonlincar phase noise of dispersive
transmission system is larger than the impact of IFWM-induced ghost
pulses.

1. Pulse Overlap in Dispersive Fiber

Fiber dispersion broadens the optical pulses and limits the transmis-
sion distance of an optical signal. Chromatic dispersion was studied in
Sec. 4.4 based on computer simulation. While the impact of chromatic
dispersion to practical signal must be studied using computer simula-
tion, analytical results arc available for Gaussian pulse in a dispersive
fiber.

For simplicity, assume that the pulse launched into the optical fiber
has a low pass representation of

1/t
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as a Gaussian pulsc with a peak amplitude of Ay, where Tj is the 1/e
width of the pulse intensity, and 1.667y is full-width-half-maximum
(FWHM) pulsc width. Based on the simple model of Eq. (4.46) in
Sec. 4.4, the pulse spectrum at the distance of z is
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B(z,w) = ApV 21Ty exp [— 5

with a pulse shape of
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where (3, is the group velocity dispersion coefficient. After a distance of
2, the pulse of Eq. (7.1) broadens to an 1/e pulse width of

T(z) = /1§ + 832212 (7.4)

A Gaussian pulse is broadened with distance from Eq. (7.4), for short
pulse with small initial pulse width of T, the pulse width increases
lincarly with distance as 7(2) = |82]|2/T5. For 40-Gb/s system with
T = 25 ps and using RZ pulses with duty-cycle of 50% of Ty = 7.53 ps.
In typical standard single-mode fiber, 8y = —21.7 ps?® /km, corresponding
to D = 17 ps/km/nm at the wavclength of 1.55 pm. The pulse width
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is doubled just after a short distance of about 4.5 km, far shorter than
the effective nonlinear length of Leg = 1/ac = 21.7 km. When 2 = Leg,
the pulsc width is already 8.57j in this particular case. For low-powcr
lincar transmission, dispersion compensation can be used at the cnd of
the fiber to return the original launched pulse. When optical amplifiers
are used periodically to boost up the power, nonlinear pulsc-to-pulse
intcraction is very strong in the system due to pulse overlap.

Pulse overlap is reduced for system with small fiber dispersion. For
example, if fiber dispersion coefficient is D = 3.5 ps/km/nm, typically
for nonzero dispersion-shifted fiber (NZDSF), the pulsce width is doubled
after a fiber distance of 22.3 km. For low speed system with long pulse
width, for example, 10-Gb/s system with Ty = 30.1 ps, the pulse width
is doubled after a fiber distance of 71.4 km for D = 17 ps/km/nm.
Pulse-to-pulse interaction is a particular problem mostly for 40 Gb/s
systems, especially for system using standard single-modc fiber with
large dispersion.

The above analysis for Gaussian pulse is largely based on Marcuse
(1980, 1981), and Agrawal (2002). We assume a zero-chirp Gaussian
pulse for simplicity. Both Marcuse (1981) and Agrawal (2002) derive
the pulse broadening for chirp Gaussian pulse. For non-Gaussian pulses
or fiber with large third-order dispersion, there is no analytical solution
for the pulse shape but the pulse width (Marcuse, 1980, 1981, Miyagi
and Nishida, 1979).

Without pulse broadening, there is no pulse-to-pulse interaction. How-
ever, pulse broadening is not necessary bad for pulse-to-pulsc interaction.
From Eq. (7.3), the amplitude of the pulse decreases with pulse width.
After sufficient pulse broadening, the effects of pulse-to-pulse interaction
decrease accordingly.

For illustration purpose, for two optical pulses of

Ei(t) = Age U/ Ea(t) = Age (T2 (7.5)

with the same 1/e width of 7 and separated by the time of T', the action
of cross-phasc modulation (XPM) from Es(¢) to F1(t) can be described
by dEi(t)/dz = jyEi(t)|E2(t)|?>. With a phase shift of vy|Ey(t)|?, the
instantancous phase shift is dd¢;(t)/dz = y|E2(t)|* with a mean phase
shift of

dA¢y f%@Wl(ﬂlgdt

= 7.6
dz [1E(@®))Pdt (7.6)
or
dAgbl ’)/P() T T2
= —— 7.7
dz Vor T = 272 )7 (77)
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Figure 7.1. The normalized phase shift function as a function of 7/T

where the optical power of the pulse train is equal to
Py = /mAiT/T. (7.8)

Figurc 7.1 shows the function of —(7/T)e~T°/2™ from Eq. (7.7) as
Ven

a function of 7/T. With no pulsc overlap when 7 < T, there is also no
phase shift as from Fig. 7.1. The phase shift is the largest at 7 = T with
moderated pulse overlap but decrcascs with the occurrence of further
pulsc overlap when 7 > T. Figure 7.1 shows two rcgions with small
pulse-to-pulse interaction effect when 7 is either much smaller or larger
than the pulsc scparation of T

In practical communication systems, a train of pulse is transmitted to
carry information. Pulse broadening reduces the effect of each interact-
ing component as from Fig. 7.1. However, two far away pulses with large
time separation may also overlap with cach other and gives more phase
shift. Systems with large dispersion and fast pulse broadening may but
not necessary provide better performance.

Intrachannel interaction in very dispersive fiber is first observed by
Shake et al. (1998) and Essiambre et al. (1999). The reduction of in-
trachanncl pulsc-to-pulse intcraction by pulse broadening was first pro-
posed in Mamyshev and Mamysheva (1999). The derivation here follows
the method of Mamyshev and Mamysheva (1999). As a comparison, in
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soliton-to-soliton interaction, as shown in Gordon (1983), distortion in-
crcascs monotonically with pulse overlap.

2. Intrachannel Four-Wave Mixing

The combination of fiber Kerr effect, fiber loss and dispersion can be
described by the nonlinear Schrédinger equation of

i O*A

2
az + 5 527 + = A AP A, (7.9)

where A(z,t) is the low-pass representation of the optical signal. At the
location of z, assume that there are pulses of

_ ATy (t— kT)?
Wt = e g (0

where Ay = {0, Ag} for on-off keying and A, = +Ap for cither phase-
shift keying (PSK) or DPSK signal. The overall optical signal is A(z,t) =
e=#2 3 uy(z, t).

The nonlinear force of jv|A|2A for nonlincar Schrédinger cquation
is Fy(z,t) = jyumnmuie 32 when the pulses of uj, un,, and u, are
considered in A(z,t) = uj+up, —i—un . Self-phasc modulation (SPM)
is induced to the pulse of w; if m =n = 1. SPM from m =n =1 is
called intrachanncl SPM (ISPM) in this chapter. Intrachanncl Cross-
phase modulation (IXPM) is induced to the pulse of u; when m =n #1
and the pulse of u,, when | = n # m. As shown later, intrachanncl
four-wave mixing (IFWM) is induced to the pulsc of ug if k =1 4+m —n,
l #n, and m # n.

The nonlinear force term of Fy(z,t) is equal to

Fo(z,t) = jvA(2) exp [—a(2)t* + b(2)Tt — c(2)T?) (7.11)
where
A A AL T e 30%/2 1/1 2
wn =g (et
2
b(z) = g + l—%n—, o(z) = % (Zf + c +€m ) (7.12)

with & = T2 — jB22. The Fouricr transform of Fy(z,t) is

I w + §b(2)T)?
Fy(z,w) = j7A(z) 2 exp {—c(z)T2 - %} . (7.13)
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With large pulse overlap when |Gs|z > T, € ~ —jf322 is close to a
pure imaginary number, we obtain b(z) ~ (I4+m—n)/€ and a(z) ~ 1/2¢.
Ignored some constant factors independent of w, we obtain

A~

Fo(z,w) ~ exp ~%ﬂ22w2 —jl+m—n)wT|. (7.14)

In time domain, the nonlinear force of Fy(z,t) is centered at the time
of (I+m —n)T, similar to four-wave mixing effects, the pulse width is
equal to /|B2]2/2.

The nonlinear force of Fy(z,t) propagates for the remaining distance
of L — z to reach the destination of L. From the location of z to L, there
is a fiber loss of e~ ®E=2)/2 an optical amplifier with gain of e*/2, and
a dispersion compcensator for an overall dispersion of Gy L for the whole
fiber span, all located at the destination of L. At 2z = L, the nonlincar
force of Fy(z,w) gives an clectric ficld with Fourier transform of

N

Fy(z, w)e‘jﬂzz“’z/Qeaz/Z. (7.15)

For the whole fiber span from 0 to L, the overall nonlincar force in time
domain is accumulated to

L
Aul,m,n(La t) = / fujl {Fg(z,w)e_JﬁNWQ/z} eCiz/QdZ, (716)
0

where F;1 denotes inverse Fourier transform with respect to w. We
obtain

-1 [ £ —jBazw?/2 | _ JYA(2)
Fo {FO(% w)e } 1+ 2j82za(2)
a(2)t? — b(2)Tt — 7b*(2)Baz/2
X exp {~ 14 2j822a(z) -

c(z)TQ} . (7.17)

The above clectric field can be simplified for £ = [ + m — n in the
general case. With a constant time shift, when [ +m — n = 0 for the
ghost pulses that affect ug(z,¢) at ¢ = 0, after some simplifications, we
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obtain
£2
Aul,m,l+7rL(Lut) = jryAlAmATer CXp |\ — =73
615
L e~z
<),
0 1+ 2Bez/T3 + 3(B22/T3)?
“expd - 3(2t/3 —QZT)(gt/B —mT)
15 + 35822
B (m —1)°T?
T2 [1+2B22/T2 + 3(Baz/TE)?] |

(7.18)

Unlike on-off keying, both PSK and DPSK signals are a constant pulse
train as shown in Fig. 2.17. IXPM is induced to ug ifl =n,m = 0orm =
n,l =0, ie., either Il = 0 or m = 0. Assume that | = 0, the factor outside
of the integration in Eq. (7.18) is jyAg|An|?, i.c., a phase modulation
proportional to v|A;,|2. While A,, induced phase modulation to wug,
Apny1 induces phase modulation to ui. Because |Any)? and |Apy1)?
has the same intensity of |A4g|? for PSK and DPSK signals, the phasc
difference between adjacent pulses ug and w; does not change due to
IXPM. However, for on-off keying, there is 1/4 probability that |A4,,|* =
|4o|? but |Ay41]? = 0. In this particular case, the phase modulation
changes the frequency of the pulse of ug but not u;. Combined with
chromatic dispersion of the fiber, the frequency modulation of on-off
keying signal is translated to timing jitter. For phase-modulated signal,
the timing jitter for all pulses is the same, i.c., no timing jitter variation.
The timing jitter for on-off keying signal was considered in Ablowitz and
Hirooka (2001, 2002), Kumar et al. (2002), Martensson et al. (2001),
and Mecozzi et al. (2000a,b, 2001). IXPM docs not degrade the DPSK
signals. Similarly, ISPM also does not degrade DPSK signals.

The pulse-to-pulse interaction is small if optical pulses do not overlap.
Significant interaction occurs only when |8s]2/T > 1. In this limit and
for lossless fiber with a = 0, we obtain

T2 ImT?
Aul,m,H-m(Lyt) = j'YAlAmAa.m@_tQ/GTOz—OEl < ik

V35| ‘%TL) » (719)

where Ei(z) = [7°°t e *tdt is the exponential integral (Gradshteyn
and Ryzhik, 1980, §8.21). From Eq. (7.19), the pulse induced from the
nonlinear force is Gaussian shapc with a pulse width of v/3Tp. From the
channcl power of Eq. (7.8), the pulse amplitude of Eq. (7.19) to Ay is
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Figure 7.2. The peak phase shift due to IFWM as a function of distance for lossless
fiber. The solid lines are the exact integration of Eq. (7.18) and the dashed lines are
the approximation of Eq. (7.19).

proportional to PyTy, or

Aul,m,l—{—m(La 0)

A() X P()T(]. (7.20)

The amplitude variation is proportional to the pulse width. With shorter
pulse, the pulse width increases very fast due to fiber chromatic disper-
sion. The ghost pulses from IFWM reduce accordingly. The usage of
short optical pulse in highly dispersive transmission reduces IFWM in-
duced ghost pulses.

Figure 7.2 shows the peak phase shift of 2Aui; 1 9/Ap duc to the
two degenerated IFWM from ! = +1,m = —1l and [ = —1,m = +1. The
peak phase shift is expressed in the unit of rad/W for a pulse width of
Ty = 7.53 and 5 ps, and the bit interval of T = 25 ps for 40-Gb/s system.
The fiber nonlinear coefficient is v = 1.24/km/W. The group-velocity
dispersion coefficient is By = —21.7 ps?. For lossless fiber, Figure 7.2
shows that the approximation of Eq. (7.19) is very close to the integra-
tion of Eq. (7.18). From Fig. 7.2, the amount of IFWM also increases
with the initial pulse width of Tj.
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3. Impact to DPSK Signals

Although IXPM does not affect DPSK signals and is excluded here
right now, IFWM gives ghost pulses exactly located at the signal pulse.
In the simplest model, the ghost pulse can be modeled as Gaussian noise
although numecrical simulation shows a distribution having significant
different with Gaussian distribution. This section first studies the sta-
tistical properties of IFWM. The crror probability of DPSK signals with
IFWM is cvaluated based on both empirical Gaussian approximation
and a semi-analytical modecl.

3.1 Statistics of Intrachannel Four-Wave Mixing

When many pulses in the fiber arc interacted with cach other through
IFWM, the overall IFWM induced ghost pulses have a peak amplitude
of

Au(] = Z Aul,m,H—m(La 0),
1m,l£0,m#0

Au= Y Augpym-i(L,0) (7.21)
Lml A1 m#A1

co-located with ug and uy at t = 0 and t = T', respectively. If N4 identi-
cal fiber spans with a length of L arc used repeatedly one after another,
IFWM adds cohcrently one span after another. The overall IFWM ghost
pulse has a pcak amplitude N4 times that of Eq. (7.21), or equivalently
speaking, induced by a single-span fiber link with a launched power of
N4 Py. In practice, the repetition of identical fiber span gives the largest
accumulation of fiber nonlinearities, representing the worst-case system
design. For a fiber link with arbitrary configuration, cach ghost pulsc of
AUy . 14-m can be calculated using V4 different integrations of Eq. (7.18).

Figure 7.3(a} shows the distribution of the peak normalized clectric
field of Aug/Ap. Figure 7.3(b) shows the distribution of the peak rel-
ative phasc shift of S{Aug}/A¢ versus S{Au;}/A; between two con-
secutive time intervals, where ${-} denotes the imaginary part of a
complex number. Figure 7.3(c) shows the distribution of R{Auwgy}/Ag
versus R{Au;}/A;1 between two consccutive time intervals, where R{-}
denotes the real part of a complex number. Figures 7.3 arc obtained for
100-km long fiber span with a normalized launched power of (®ny,) =
NavLegPy = 1 rad, 100% dispersion compensation at the end of cach
fiber link. The fiber link has an attenuation coefficient of & = 0.2 dB/km.
The pulse width is Ty = 7.53 ps, corresponding to a FWHM pulsc width
of 12.5 ps, or 50% of the bit interval of T = 25 ps for 40-Gb/s DPSK
signals. The distributions of Figs. 7.3 arc shown as a gray scale inten-
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Figure 7.3. Distribution of IFWM ghost pulses. (a) The distribution of the complex
electric field of Aug/A¢. (b) The distribution of the relative phase of S{Auo}/Ao
versus S{Au;}/A1 for two consecutive symbols. (C) The distribution of the real
parts of the electric field of R{Aug} versus R{Au,}/A; for two consecutive symbols.

sity. The simulation of Figs. 7.3 uses 20-bit DPSK signal with about 1
million different combinations. Figure 7.3(a) is for ghost pulse at the
center bit and Fig. 7.3(b) is the imaginary parts of the ghost pulscs of
the two center bits. If the ghost pulses have peak amplitude signifi-
cantly smaller than the pulse amplitude of |Ag|, Figure 7.3(b) is approx-
imatcly the relative phase shift between two consccutive pulses, i.e., the
z-axis is I{Aup}/Ag and the y-axis is S{Awu;}/A;. The simulation of
Figs. 7.3 ignores all the contribution from ISPM and IXPM that do not
degrade DPSK signals. When identical fiber span is repeated one after
another, IFWM induced ghost pulses add coherently one after another.
Figures 7.3 are valid for single- and multi-span fiber link with mean
nonlincar phase shift of (®nr,) = 1 rad.

From Figs. 7.3, the IFWM induced ghost pulse docs not have a regular
distribution. While the imaginary part in Fig. 7.3(a) has larger peak
amplitude, the rcal part of the ghost pulse is still very significant and
has twice the variance of the imaginary part. Although Aug/Ay is zero
mean, the distribution of Fig. 7.3(a) trends toward positive real part
but spreads more or less equally in both positive and negative imaginary
part.

The IFWM ghost pulses induce phase changes of ${Awug}/Ag and
S{Aui}/A; that are corrclated with cach other. The correlation co-
efficient of that in Fig. 7.3(b) is about 0.58. The positive correlation
reduces the impact of [FWM to the crror probability of DPSK signal.
As adjacent pulses trend to have similar phase shift, the phase difference
is reduced accordingly.
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Figure 7.4. The phase distribution of [IFWM.

The real part correlation of Fig. 7.3(c) is different with the correla-
tion of Fig. 7.3(b) for imaginary part. If R{Aug}/Ap is very large and
positive, R{Awu;}/A; is usually very small. The correlation coefficient is
negative and equal to about —0.55. When the real part of ®{Aug}/Ag
mostly has large positive valucs but ®{Au;}/A; has small value, the
error probability reduces as the two constellation points of two consec-
utive symbols are further apart. The correlation property of Fig. 7.3(c)
also reduces the error probability for DPSK signal.

When Ay all change sign to — Ay, Aug/Ag remains the same. The
ghost pulses of Awg is symmetrical with the origin and equal to that in
Fig. 7.3(a) and its rotation by 180° for negative Ag. When Ay, is changed
to (—l)kAlc with sign change in only odd position, Aug remains the same
but Awu; changes sign. However, S{Aug}/Ag and S{Awu;}/A; remains
the same. The distribution of ${Aug} versus ${Awu,} is the 90°, 180°,
and 270° rotations of Fig. 7.3(b).

Figure 7.4 shows the phase distribution due to IFWM, including the
phase shift of ${Awup}/Ap and the phase difference of S{Aug}/Ag ~
S{Auy}/A;. Figure 7.4 is shown for the same paramcters of Figs. 7.3.
Numerical calculation shows the variance of the IFWM-induced phase
difference of S{Aug}/Ag — S{Auq}/A; is about the same as the vari-
ance of the phasc of 3{Awug}/Ag, showing that the phase shift at two
consecutive symbols are corrclated with cach other.
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The distribution of Fig. 7.3(b) is basically the same as that in Wei and
Liu (2003, Fig. 2). The distribution of Fig. 7.4 is also similar to that in
Wei and Liu (2003, Fig. 3). For Figs. 7.3, we consider a fiber with loss
instead of the lossless case of Wei and Liu (2003). For lossy fiber with
span-by-span dispersion compensation, ghost pulses from IFWM are not
reduced by 50% precompensation of chromatic dispersion. IFWM can
be reduced by dispersion management, usually using symmetric disper-
sion compensation (Mecozzi et al., 2001, Striegler and Schmauss, 2004).
However, the compensation scheme of Mecozzi et al. (2001) does not
usc dispersion management along the fiber, similar to the recent system
demonstration of Vaa ct al. (2004) with lump dispersion compensation
at the beginning and end of the fiber link.

3.2  Error Probability for DPSK Signals

The error probability of DPSK signal with IFWM ghost pulse is dif-
ficult to find analytically. From Figs. 7.3, the distribution of the IFWM
induced ghost pulses is not Gaussian distributed. Of course, similar to
the simulated error probability of Figs. 5.10 and 5.14, the impact of
IFWM to DPSK signal can be studicd based on numerical simulation.
However, with the distribution of Fig. 7.3 evaluated numcrically, the
crror probability of DPSK signal with IFWM can be calculated semi-
analytically.

Similar to the approaches of Sces. 3.4.2 and 4.2, ignored the constant
factor of interferometer loss and photodiode responsivity, the photocur-
rent is

i(t) = |E(t) + Auy + E(t —T) + Aug|> — |E(t) + Auy — E(t—T) — Aug|?,

(7.22)
where Auy and Awup arc ghost pulses duc to IFWM, located at two
consccutive time intervals of t = 0 and ¢ = T', respectively. Assumed for
simplicity that the transmitted phascs at t = 0 and ¢ = T arc identical
and, without loss of gencrality, Fs(t) = E,(t — T) = Ag > 0. With
E(t) = Ap + n(t), we obtain

i(t) = |240+Auy +Aug+n(t) +n(t—T) 2 — | Aug — Aug+n(t) —n{t—T)
(7.23)

A decision error occurs if i(t) < 0. Given Awug and Awu;, the two
terms of Eq. (7.23) arc independent of cach other and have a noncentral
chi-square (x?) distribution. Each term of Eq. (7.23) has the same noisc
variance of 402 where E{|n(t)]?} = 202. The noncentralities of two
terms of Eq. (7.23) are [24g+Aui +Aug|? and |Aug — Aug|?, respectively.
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From Appendix 3.A, the probability of i(t) < 0 is cqual to

1
pe(Buo, M) = Q(a,) = eI hy(ab), (7.24)
where
s A Aug |?
A Aug |?
B o= —pz—s -/—%—7139- , (7.26)

where p, = A2/202 is the signal-to-noise ratio (SNR) without taking
into account the ghost pulses.
The error probability is equal to the expectation of

pe=F {Pe(Auo, Aul)} (7~27)

that can be cvaluated numerically based on the distribution of, for cx-
ample, Figs. 7.3. From the distribution of Figs. 7.3(b) and (c), when
|Aug| is very large, |Auy| is also very large too. When Aug + Awug has
its peak values, either positive or negative, Aug — Auq is usually very
small. Similarly, when Aug— Au; has its peak values, Aug+ Awu; is usu-
ally very small. The error probability of Eq. (7.27) only considers the
casc when Ag = A;. As discussed above, the distribution for Ag = —A4;
of the ghost pulses for Figs. 7.3(b) and (c¢) are the same as that for
Ag = Aq. If the transmitted symbols of two consccutive symbols have a
phase difference of 180°, the error probability is the same as that given
by Eq. (7.27) for Ag = A, without phase difference.

For the real parts of the ghost pulses of Aup/Ag and Awui/A;, the
correlation coefficient is negative, giving a variance of R{Aug}/Ag —
R{Awu;}/Ag larger than the variance of R{Aug}/A¢ + R{Aui}/Ag. The
negative correlation supposes to increase the error probability. However,
from Fig. 7.3(c), when ®{Aug}/Ap has large positive values, R{Au; } /A,
has small value, the error probability reduces as the two constellation
points of two consecutive symbols are further apart. The combined effect
of negative correlation but special distribution should reduce the effect
of IFWM ghost pulses to error probability.

Figure 7.5 shows the error probability as a function of SNR p, for
DPSK signal with IFWM induced ghost pulses. The semi-analytical
formula of Eq. (7.27) with (7.26) is used to calculate the error probability
based on IFWM ghost pulses distribution of Figs. 7.3 from a 16-bit
permutation of a binary scquence. The number of bits is reduced for
Fig. 7.5 as large number of bits increases the computation time but
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Figure 7.5. The error probability as a function of SNR for DPSK signal with [IFWM
induced ghost pulses.

not the accuracy of the curves in Fig. 7.5. The system configuration
is the same as that for Figs. 7.3. The mecan nonlinear phase shift is
(®n1) = NavLePp. Assume that identical fiber span is repeated one
after another, Figure 7.5 is valid for single and multiple systems with
the same (®yp). Of course, the repeat of the same configuration span
after span is the worst-case with the largest accumulation of distortion
duc to fiber nonlinearities.

Figure 7.6 shows the SNR penalty as a function of mean nonlincar
phase shift (®ny,). In additional to the SNR penalty corresponding to
Fig. 7.5, Figure 7.6 also shows the SNR for the case when the initial
pulsc width is Tp = 5 ps, for a duty cycle of about 1/3. Followed the
estimation of Fig. 7.2, a system with short initial pulsc width has less
IFWM and smaller IFWM induced SNR penalty.

If the IFWM induced ghost pulses are assumed as Gaussian dis-
tributed electric field, the noisc is increased to n(t) + Aug at t = 0. The
SNR including the ghost pulse has a SNR ratio of A3/E{|n(t) + Augl|?}.
However, this definition of SNR ignores the correlation between Aug and
Aul.
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Figure 7.6. The SNR penalty as a function of mean nonlinear phase shift of (®nr.).
[Adapted from Ho (2005c)]

The variance of the phase of Ag+n(t) is approximately cqual to 1/2p;
from Eq. (4.A.15). Similar to that for the Q-factor of Eq. (5.81), the
differential phase has a phase variance of 1/p,. For IFWM induced ghost
pulses, the corresponding differential phase variance is

ohy = B {[3{Auo}/ 4 - S{Auw}/A1} . (7.28)

With this additional differential phase variance, the SNR penalty can be
estimated as

—10-logyo (1 — 2003,) , (7.29)

where 20 (13 dB) is the required SNR to give an error probability of
1079 for DPSK signal as from Fig. 3.13.

Figure 7.6 also shows the SNR penalty calculated by Eq. (7.29). For
a SNR penalty less than 2 dB, the SNR penalty of Eq. (7.29) undcresti-
mates the SNR penalty by up to 0.25 dB. For SNR penalty larger than
2 dB, the SNR penalty of Eq. (7.29) overestimates the SNR penalty.

Note that the usage of the approximation of Eq. (7.29) does not
greatly simplify the analysis of DPSK signal with IFWM induced ghost
pulses. To calculate the variance of ‘72A¢> of Eq. (7.28), IFWM terms
of Aug induce by many different combinations of bit sequence must be
cvaluated. The semi-analytical crror probability just requires onc fur-
ther step to find the error probability of Eq. (7.26) for each combination
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of Aug and Au;. The average error probability of Eq. (7.27) becomes
the error probability for the system. The variance of Eq. (7.29) in dif-
ferent mean nonlinear phase shift of (®yy,) increases with (®xp)?. The
whole curves of Fig. 7.6 requires, to certain extend, one evaluation of the
variance of 02A & However, using the same set of Aug/Ag and Awug /A,
different point of the semi-analytical results in Fig. 7.6 requires the eval-
uation of a new set of error probabilitics of Eq. (7.26) to find the average
of Eq. (7.27).

The above analysis and numerical results always used the pcak am-
plitude of the ghost pulses and the signal pulses. The pulse width of
the ghost pulses is ignored for simplicity. However, the IFWM terms
of Eq. (7.18) does not have the same pulse shape as the signal but in
fact approximately broadens to v/3 times wider than the signal. As the
power is proportional to the pulse width, the ghosts pulse has V/3 times
larger power than the signal. In the worst case, the corresponding curves
of Fig. 7.6 must be scaled by a factor of 31/% = 1.32 to take that into
account. However, the discrepancy due to pulse width depends on the
bandwidth of the optical and electric filters in the receiver.

If optical matched filter is used preceding the polarized direct-detection
DPSK receiver and the clectric filter at the receiver has a wide band-
width that does not distort the signal, assume the ghost pulse is v/3
times wider than the signal pulse, the IFWM amplitude is increased by
a factor of \/3/2 = 1.22, less than the ratio of 31/4 duc to power increase.

If both the optical and clectric filter has a very wide bandwidth, a very
bad case that allows too much noise to the receiver, the pcak amplitude
dircctly transfers to the receiver. IFWM doces not increase from the peak
amplitude for Eq. (7.18). If the optical filter has a wide bandwidth but
the clectrical filter is a Bessel filter having a bandwidth 0.75 time the
data rate, IFWM increases by a factor of 1.19 relative to the signal pulsc.

In practical system design, Figure 7.6 must be modified to take into
account the design of both receiver and transmitter. Also note that the
results of this section assume an optical matched filter but ignored the
pulsc width of ghost pulses.

IFWM and IXPM were first observed by Shake et al. (1998), and
Essiambre et al. (1999) and first analyzed by Mamyshev and Mamy-
sheva (1999). The analysis here follows similar method in Ablowitz and
Hirooka (2002), Mecozzi et al. (2000b), Striegler and Schmauss (2004),
and Wei and Liu (2003). The formula of Eq. (7.18) was first derived
in Mecozzi ¢t al. (2001) but modified by Essiambre et al. (2002) and
Chowdhury and Essiambre (2004).

IFWM can be suppressed using symmetric dispersion compensation
(Mecozzi et al., 2001, Stricgler and Schmauss, 2004, Wei and Plant,
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2004) and alternating polarization (Liu ct al., 2004c, Xie et al., 2004).
As a general method, optical phase conjugation can also reduce IFWM
(Brener et al., 2000, Chowdhury and Essiambre, 2004, Chowdhury et al.,
2005, Pepper and Yariv, 1980).

While phase modulation is another method to suppress IFWM for
on-off keying (Alic and Fainman, 2004, Appathurai et al., 2004, Cheng
and Conradi, 2002, Forzati ct al., 2002, Gill et al., 2003, Liu et al.,
2002a}, DPSK signal always has phase modulation with higher tolerance
to IFWM than on-off keying signal. For on-off keying signal, all terms
of AjA,,Af  are positive and sum together. With phase modulation,

l+m

the factors of A;Ap, A7, may be positive and negative. Of course, if the

terms of A A, A} tm for different [ and m are independent of each other,
the variance of the ghost pulse remains the same as the case without
phase modulation. However, because of the dependence between terms
for different [ and m, the overall IFWM reduces by phasc modulation.
Phase modulation is intrinsically used in DPSK signals and IFWM can
thus be reduced accordingly.

IXPM also dose not degrade PSK signal as the phasc-locked loop
(PLL) tracks out the constant phase. Like usual PSK signal recciver, if
the demodulator of PSK signal does not take into account the correlation
between two adjacent ghost pulses. The SNR penalty for PSK signal is
larger than that for DPSK signal and performs worst than DPSK signal
in high TFWM. Using a mcthod similar to Eq. (7.29), the SNR penalty
for PSK signal can be estimated as

—10 - logyo (1 — 36E {[S{Aug/Ac}]*}) . (7.30)

When the phase variance and the differential phase variance is ap-
proximately the same from Fig. 7.4, the SNR penalty for PSK signal
may be larger than that for DPSK signals. Of course, practical PSK re-
ceiver may be designed to anticipate the correlate phase due to IFWM.
In practice, the phase error for PSK signal must be analyzed based on
Eq. (4.26) for a phasc-locked loop with closed-loop transfer function of
H(s). The correlation of IFWM ghost pulses must be included in Sy, (f)
for Eq. (4.26). Currently, the power spectral density of the IFWM ghost
pulses is not known.

4. Nonlinear Phase Noise Versus Intrachannel
Four-Wave-Mixing
The previous Chapters 5 and 6 all consider non-return-to-zcero (NRZ)
signals without pulse distortion when the optical signal is propagated
through the optical fiber. In Sec. 5.1, the mean nonlinear phase shift for
an optical pulse is given by Eq. (5.8) for NRZ or continuous-wave signal.
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However, SPM induced nonlinear phase noisc for short pulse requires
special trcatment other than the method in Chapter 5, especially must
be counsistent with previous section for a fair comparison with TFWM.

The mean nonlinear phasc shift of (®np) = YNaPyLeg does not
change with signal format of RZ-O0K or RZ-DPSK. ISPM phasc noisc,
or SPM-induced nonlinear phase noise, is given by the beating of the
optical pulse itself with amplificr noises. For system without chromatic
dispersion, for the same average powoer, the peak amplitude of the sig-
nal is inverscly proportional to the pulse width. In additional to giving
more nonlinear phase noise to the signal, the usage of RZ pulse gives
time-dependence to the nonlinear phase noise. The variance of nonlin-
car phase noise is a function of time and the pcak variance of nonlinear
phase noise increases with the decrcase of pulse width.

For system with chromatic dispersion, from Eq. {7.3), the optical pulsc
broadens with transmission distance. The pulse is usually broadened
faster for shorter pulse. Nonlincar phase noise decreases with chromatic
dispersion, mostly duc to pulsc broadening. With pulse overlap, the ad-
jacent pulscs beat with the amplifier noise located with the center pulse.
IXPM phase noise, or IXPM-induced nonlinear phase noise, increases
with pulse broadening. As shown later, the combined ISPM and IXPM
phase noiscs are comparable to the nonlincar phasc noisc of NRZ signal
without pulse broadening.

To be consistent with the method to derive Eq. (7.18), we consider
the nonlincar force of the interaction of signal with noise. For signal
with amplifier noise, the SPM-induced nonlinear force including ampli-
fier noises is cqual to

Jvfue(z, t) + nlz, )]|ug(z, t) + niz, 1) (7.31)

The nonlinear force for ISPM is jyug |ug|? from the signal alonc, the same
as that for Eq. (7.18) with { = m = 0. The nonlincar force associated
with nonlinear phase noise has two different terms of

2j7|uo(z,t)*n(z,t), and jyud(z,t)n*(zt), (7.32)

when all quadratic or higher-order terms of the noisc arc ignored at high
SNR. The IXPM term of 2j7y|un(2,t)[*n(z,t) also gives IXPM phase
noise to the pulse of wug(z,t) at ¢ = 0. For system with large SNR,
the IFWM related noise and signal beating of 2jvu;(z, t)uk, (2, t)n(z,t)
with [ # m is much smaller than the IFWM induced ghost pulses from
the same effects. While IFWM phase noise is ignored, the ISPM phase
noise is considered but its result is also applicable to IXPM phase noise,
almost without modification. As shown in last section, pulsc-to-pulse
interaction due to both ISPM and IXPM gives the same phase shift
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to all pulses and does not degrade a DPSK signal. While the pulse-to-
pulse interaction due to IFWM gives ghost pulscs, both ISPM and IXPM
phasc noises are from the interaction of pulses with amplificr noiscs. Due
to the difference of amplifier noise located at adjacent pulses, ISPM and
IXPM phase noises are not the same at adjacent pulses.

For the nonlincar force from 2j7|ug(z, t)|*n(z, t), the overall nonlinear
force is equal to

L
Auy,(t) = 2]'7/0 [|u0(z,t)|2n(z,t)] ® h_,(t)e”*dz, (7.33)

where ® denotes convolution. The impulse response of h_,(t) provides
dispersion compensation for h,{t), where h,(t) is an impulse response
from fiber chromatic dispersion, the corresponding transfer function is
H.(w) = exp(jBy 22 /2).

Due to fiber chromatic dispersion, from Eq. (7.3), the pulse of |ug(z, t)|?
has an 1/e width of 7(z)/v/2 and a Fouricr transform of

VO(Z’W) = \/EIAOFTO CXp [_Tz(z)aﬂ/zq ’ (734)

where 7(z) is the pulse width as a function of distance given by Eq. (7.4).
The optical amplifier noise of n(z,t) is also changed due to fiber dis-
persion. Although fiber dispersion does not change the spectrum of the
signal, the time dependence of the signal is changed by chromatic disper-
sion. At the input of the fiber, E {n(0,t + 7)n*(0,t)} = 2025(7) as addi-
tive white Gaussian noisc, where U,QL is the noise variance per dimension.
With fiber dispersion, n(z,t) = n(0, t)®h,(t) and E {n(z,t + 7)n(z,t)} =
2026(r), but

+oo )
E {n(z1,t + 17)n*{(29,t)} e 7¥7dr

-0

= 202 H,, (w)H, (w) = 202/21—2)%/2 (7 35)

The temporal profile of Au,(t) can be represented by the variance of
Au,(t) as a function of time, or

B {|au,(t) }

) L L +00 +oo ) )
= 4y / / / / o (22, 72) P utp (21, 71)]
0 0 —00 —00

x E{n(z1, 11)n" (22, 72) }h” , (t — T2)h_z, (t —T1)

—2z2

x e~ 1 T2 dridrodzd2s. (7.36)

Au, (1)
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Replacing E{n(z1,71)n*(22,72)}, h—,, (t), and h_,,(t) with their corre-
sponding Fourier transforms, we obtain

+o00 p+oo p+oo
O'QAun =7 Un/ / / / / Vo(z1, w1 — w)Vo(z2,wa — w)

x e)f(m=22) Z/QHizz(WQ)H—m(wl)
x el @imwalt-alat22) g dwodwdzydzy.  (7.37)

Notc that both Vy(z,w) and H,(w) arc “Gaussian” shape and the
integrations over z; and 29 are complex conjugatc of cach other, the
time-depending variance is equal to

24572 (2)wt+f2 22w? 2
£ = 4’7202T2A4 +oo| L €xp ( TZ(Z)—Qjﬂzzz gaz) dzl a
) 0 Z| aw.

™ VT2(2) — 2§62z
(7.38)
Similarly, the variance profile corresponding to yu2(z,t)n*(z,t) can

be calculated by replacing 72(z) by 72 — 7822 and the spectral density
for n*(z,t) is the complex conjugate of that for n(z,t). We obtain

O'Aun(

—0o0

(t—Bazw)(t—j T2w) 2
2 2T2A4 “+o0 L CXp |:——'—T2‘—‘— — QZ:|
Uiu’n(t) SRR / /0 0 tipe dz| dw.

T VI + 52
(7.39)

Figure 7.7 shows the temporal profile, both the standard deviation
(STD) of oA, (t) and oay (t), of the nonlinear force of both Awu(t)
and Aw/ (t) for typical fiber dispersion coefficients of D = 17 and 3.5
ps/km/nm. The initial launched pulse has an 1/e width of Ty = 5 ps.
Figure 7.7 shows that the nonlinear force of Au,(t) due to the beating of
lug (2, t)|? with n(z, t) is far larger than the nonlinear force of Au/,(t) duc
to the beating of u?(2,t) with n*(2,t). In term of power, the variance
of JQA% ® is less than 1% of aiun(t). The noise term of Aw,(t) also

—00

has more spreading over time than Aw/,(t). The spreading of Awu,(t)
is more obvious for a high dispersion coeflicient of D = 17 ps/km/nm.
From Fig. 7.7, the contribution of Au/ (¢} to the nonlinear phasec noise
of the system can be ignored.

The temporal spreading of oay, (t) shows that ISPM phase noise
spreads to adjacent symbols. Unlike Eq. (7.18) with an 1/e pulse width
of about /3Ty, the profile of Fig. 7.7 has a pulsc profilc narrower than
V/3Tp near the peak but a slow decreasing tail. For 40-Gb/s signal with
T = 25 ps, the STD of oay, (t) at +25 ps is still very large, indicat-
ing that IXPM phase noisc may be significant to the system with large
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Figure 7.7. The temporal distribution of nonlinear force due to the beating of signal
with noise. The upper two curves are oau,, (t) and the lower two curves are oa. (t).

pulsc overlap. For the case with D = 3.5 ps/km/nm, o, (t) at £25 ps
is relatively smaller than that for the case with D = 17 ps/km/nm.

The temporal profile of Fig. 7.7 does not provide a direct answer to
whether the spreading of o a,, (t) can be ignored. Later part of this sec-
tion will either include or exclude the IXPM phase noise. The temporal
profile of Fig. 7.7 cannot be used dircctly to estimate the dependence
between the nonlinear phase at ¢ = 0 and, for example, t = T. As
a trivial example for the signal of a system without chromatic disper-
sion and pulsc distortion, the nonlincar force is always proportional to
luo(0,t)|2n(0,t). As white noise, the noises of n(0,t) at t =0 and t = T’
are independent of cach other. In this trivial case, the profile corre-
sponding to Fig. 7.7 is proportional to |ug(0,t)|%.

If the nonlinear force of Aw,(t) is passing through an optical filter
with an impulse responsc of hy(t), the filter output at the time of mT is

+o0
CO,m = / ho(mT — t)Aun(t)dt

—00

oo pL
2j'y/_+ ; ho(mT — t){ [|u0(z,t)|2n(z,t)]®h_z(t)} e~ Y dzdt.

(7.40)

The ISPM phasc noisc from (g ¢ is the noise generated by the beating
of Jug(z,t)|? with n(z,t) and affects the DPSK pulse at t = 0. The IXPM
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phase noisc from (p1 is from the beating of |up(z,t)|? with n(z,t) and
affect the DPSK pulse at £ = T". Due to IXPM, the DPSK pulse at t = 0
also affects by the beating of |ui(z,t)|? (the pulse at t = T') with n(z,t)
to give the IXPM phase noise of {1 9. Other than the temporal location,
(1,0 is statistically the same as (o —1. In general, (i, is statistically the
same as (pm—k. Lhe term of (oo is ISPM phase noise and other terms
of (;,m with | # m are IXPM phase noises.

For DPSK signal, the same as Fig. 7.3(b) to consider the differential
phase, the differential nonlinear phase noise from both ISPM and IXPM
phasec noiscs is approximately cqual to

5¢7L = AL()% {ZCm,O} - Ailg {ng,l} . (741)

For the optical pulses of ug(0,t) and u1(0,t), the optical filter of h,(t)
is assumed to give an output of Ay and A; at t = 0 and ¢t = 7', respec-
tively. If the optical filter of h,(t) has a Gaussian impulse response and
an 1/e pulse width of ¢,, the impulse response is

1 2+ 12 t2
ho(t) = —— Y0 -0 - 7.42
(==Yt exp( th), (7.42)

t2 1
Hy(w) =4/1+ i”% exXp <—§t§w2> , (7.43)
0

For simplicity, Ag = A; is assumed for the same transmitted symbols
in consecutive time intervals. As a circular complex random variables,
the random variables of (o ., has the property that ${{p»} and I{(om}
arc independent and identically distributed. The variance of d¢,, is

T34 = Aig [Z S E{Cniorpot - DY E {cml,og;;z,l}] . (7.44)

mip Mo m1p ma

and

Defined a function of f,,(w) as

T(2)2—2jB2z+2t2

~ 12?4 [(£3—jBa2)wrtjmT] }
e—azdz’
VT(2)? = 25822 + 2t

LeXp{
Fnlw) = 2yl Ao P2+ 2} /
0

(7.45)
where t, is the 1/e-width for the impulse response of h,(t), assumed that
it is Gaussian pulsc shape, we obtain

2 +00
E{GmaGao} = 2 [ hm@f@ide (140



